

Copyright

- Copyright © 2010-2024 A. G. Stankevicius
- Se asegura la libertad para copiar, distribuir y modificar este documento de acuerdo a los términos de la GNU Free Documentation License, versión 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni textos de cubierta delantera o trasera
- Una copia de esta licencia está siempre disponible en la página http://www.gnu.org/copyleft/fdl.html
- La versión transparente de este documento puede ser obtenida de la siguiente dirección:

http://cs.uns.edu.ar/~ags/teaching

Redes de Computadoras - Mg. A. G. Stankevicius

Contenidos

- Servicios y protocolos de la capa de transporte
- Multiplexado y demultiplexado de segmentos
- Transporte no orientado a la conexión (UDP)
- Teoría de transporte confiable de datos
- Transporte orientado a la conexión (TCP)
- Establecimiento y cierre de conexiones
- Teoría de control de congestión
- Control de congestión en TCP

car	
2	
5	
3	

Control de congestión

- La congestión se produce cuando los nodos envían tal cantidad de información que el núcleo de la red no alcanza a procesar
 - → No confundir con el control de flujo
- ¿Cómo se manifiesta la congestión en la red?
 - Por la pérdida de paquetes producto de la saturación del almacenamiento intermedio de los routers
 - * Por el incremento en los retardos producto del aumento del tiempo de encolado en los routers

Redes de Computadoras - Mo A G Stankevicius

Control de congestión

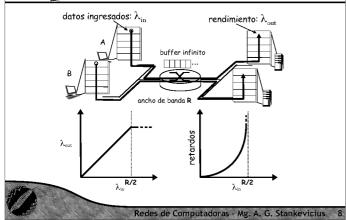
- Se trata de un problema igual de desafiante que el trasporte confiable de información
- En la década del '80, antes de que sea tenido en cuenta, el núcleo de internet colapsó
 - * Los administradores reseteaban el **HW** y la red volvía a funcionar sólo por un par de horas
 - → ¿Se entiende la magnitud del problema?
 - → iiiReseteaban internet!!!

Redes de Computadoras - Mg. A. G. Stankevicius 5

Control de congestión

- Antes de abordar cómo evitar la congestión nos concentraremos en entender cuáles son las causas de la congestión y cuáles son sus consecuencias
- La idea es partir de un escenario simplificado, más directo de analizar, para luego ir considerando situaciones más realistas
 - Esto es, seguiremos un acercamiento análogo al adoptado para presentar los desafíos asociados a la transmisión confiable de datos

<u> </u>

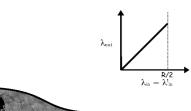

Congestión con buffer infinito

- Como primer escenario consideremos la siguiente situación:
 - → Dos emisores y dos receptores
 - → Un único router que los comunica
 - * El router cuenta con un almacenamiento intermedio infinito
- Al contar con un buffer infinito, los paquetes no se pierden, por lo que tampoco se debe retransmitir paquete alguno

Redes de Computadoras - Mg. A. G. Stankevicius

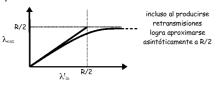
Congestión con buffer infinito

Congestión con buffer finito

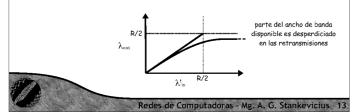

- Consideremos ahora un escenario análogo al anterior, pero con el router contando con una cantidad finita de almacenamiento intermedio
 - La eventual pérdida de paquetes ahora causa la retransmisión de los mismo
 - * Idealmente queremos que $\lambda_{\mbox{\tiny in}}=\lambda_{\mbox{\tiny out}}$
 - Una retransmisión "perfecta" es producto sólo de las pérdidas de paquetes
 - * Por otra parte, las retransmisiones de paquetes demorados incrementan la tasa real $\lambda'_{\mbox{\tiny in}}$

Congestión con buffer finito A handatos de partida sumado a los datos retransmitidos buffer finito

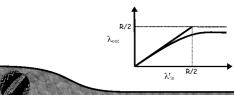
Costos de la congestión


- Primer escenario: el emisor sólo envía al tener la certeza de que hay lugar en el buffer
 - → No se producirán pérdidas de paquetes
 - Por ende, $\lambda_{\scriptscriptstyle in}=\lambda^{\scriptscriptstyle I}_{\scriptscriptstyle in}$

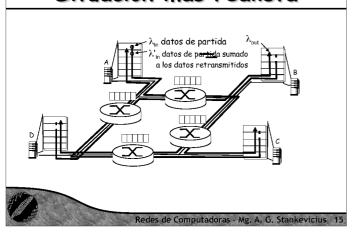
Redes de Computadoras - Mg. A. G. Stankevicius 11


Costos de la congestión

- Segundo escenario: el emisor sólo reenvía al tener la certeza de que se produjo una pérdida
 - Ocasionalmente se puede producir una pérdida al saturarse el buffer del router
 - → El emisor sólo reenvía los paquetes que conoce que se han perdido (esto es algo imposible de determinar a ciencia cierta)


Costos de la congestión

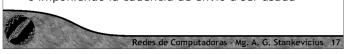
- Tercer escenario: al igual que antes, pero ahora se contempla que el emisor envíe duplicados
 - → Ocasionalmente se puede producir una pérdida al saturarse el buffer del router
 - * El disparo anticipado de un temporizador provoca la retransmisión innecesaria de paquetes


Costos de la congestión

- La congestión genera dos costos ocultos:
 - Para un mismo nivel de datos recibidos se debe enviar un mayor nivel de datos debido a las retransmisiones
 - Las retransmisiones producto de los retrasos malgastan ancho de banda en los enlaces

Redes de Computadoras - Mg. A. G. Stankevicius 14

Situación más realista


Situación más realista

- Consideremos ahora un escenario con múltiples emisores y receptores y con múltiples enlaces con almacenamiento intermedio finito
 - Al producirse una pérdida todo el ancho de banda invertido en mover ese paquete a través de los routers previos termina siendo malgastado

Detección de la congestión

- Control de congestión punta-a-punta (TCP)
 - * La red no brinda información acerca de que sucede en el núcleo de la red
 - La congestión se detecta al observar pérdidas de paquetes en el origen o el destino
- Control de congestión asistida por la red (ATM)
 - * Los routers informan a las computadoras en la frontera de la red acerca de las congestiones
 - Usando banderas (por caso, el campo ECN de IP), o imponiendo la cadencia de envío a ser usada

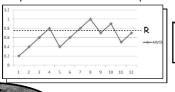
Control de congestión en TCP

- A diferencia de ATM, TCP adopta un esquema de control de congestión punta-a-punta
 - → Por ende no recibe asistencia del núcleo de la red
 - El emisor limita su tasa de transmisión respetando la siguiente relación:

[ultbyteenv - ultbyterec] < ventcong

* El tamaño de la ventana es dinámico, depende del nivel de congestión en la red percibido por el emisor

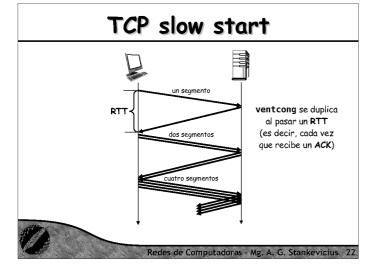
Control de congestión en TCP


- ¿Cómo hace el emisor para percibir el nivel de congestión en la red?
 - → Tomando nota de los eventos de pérdida
 - * Se produce un evento de pérdida toda vez se vence el tiempo de espera TCP o bien cuando se reciben cuatro ACK para el mismo segmento TCP
 - El emisor responde ante un evento de pérdida reduciendo su ventana de congestión
- Se han implementado diversas políticas que mejoran la respuesta de este mecanismo

Redes de Computadoras - Mg. A. G. Stankevicius 19

TCP AIMD

- TCP adopta la política AIMD (Additive Increase Multiplicative Decrease) para controlar el tamaño de la ventana de congestión
 - * El emisor incrementa de manera lineal su ventana de congestión a cada RTT, pero ante un evento de pérdida se reduce exponencialmente a la mitad


por prueba y error se intenta determinar el ancho de banda a disposición

Redes de Computadoras - Mg. A. G. Stankevicius 20

TCP slow start

- Al comenzar, la política AIMD puede tomar un tiempo excesivo en alcanzar el régimen óptimo
- Consideremos el siguiente ejemplo:
 - → **RTT** = 200ms y **MSS** = 500 bytes
 - → Inicialmente ventcong = 1, pero MSS/RTT = 20 Kbps
 - * Si se dispone de un mayor ancho de banda, TCP va a tardar bastante tiempo hasta hacer uso del mismo
 - * La política slow start indica que al comenzar se debe agrandar exponencialmente la ventana de congestión hasta que se detecte el primer evento de pérdida

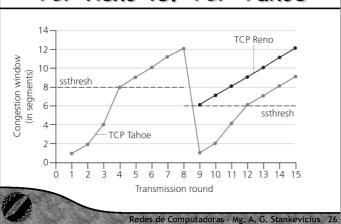
Ajuste fino

- TCP implementa un ajuste sutil en función de cómo es que se detectó la congestión
- Si se vence el tiempo de espera TCP:
 - → ventcong se reduce a 1
 - de ahí crece exponencialmente hasta alcanzar un determinado umbral para luego crecer linealmente
- Ante tres ACK duplicados para un segmento:
 - → ventcong se reduce a la mitad
 - → de ahí crece linealmente como siempre

Redes de Computadoras - Mg. A. G. Stankevicius 23

Ajuste del umbral

- ¿Cómo determinar el valor más apropiado para el umbral que altera el ritmo de crecimiento de la ventana de congestión?
 - * El umbral tiene que depender del nivel de congestión actual en el núcleo de la red
 - Un posibilidad es usar el valor de ventcong antes del evento de pérdida como guía
 - * A tal efecto, cuando la nueva ventana de congestión alcance la mitad del valor que tenía antes se deberá cambiar de un crecimiento exponencial a uno lineal


TCP Reno vs. TCP Tahoe

- Los distintos ajustes finos al mecanismo de gestión de la congestión dieron a lugar a diferentes implementaciones
 - → TCP Reno implementa el ajuste fino antes visto
 - * En contraste, TCP Tahoe dictamina que en ambos casos la ventana de congestión debe reducirse a 1
- Estos llamativos nombres de las versiones de TCP se corresponden con las versiones BSD en las que se implementaron por primera vez

Redes de Computadoras - Mg. A. G. Stankevicius 25

TCP Reno vs. TCP Tahoe

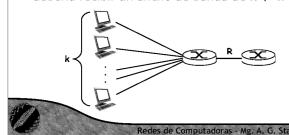
En síntesis

- Mientras ventcong <= umbral, el emisor está en la fase "slow start", por lo que la ventana debe crecer exponencialmente
- Cuando ventcong > umbral, el emisor entra en la fase de "evasión de congestión", por lo que ahora la ventana crece linealmente.
- Si se reciben tres ACK repetidos, tanto umbral como ventcong se ajustan a ventcong/2
- Al vencerse el tiempo de espera TCP, se haceumbral = ventcong/2 y luego ventcong = 1

ASSESSMENT OF THE PARTY OF THE		ACCURATION AND ADDRESS OF THE PARTY OF THE P	0.9200.40
	Computadoras		

Desempeño de TCP

- ¿Cuál será el desempeño de TCP en función de ventcong y del RTT actual?
- Sea W el tamaño de la ventana en el momento que se produce una pérdida
 - → Cuando ventcong es W el desempeño es W / RTT
 - Acto seguido, el tamaño de ventana se restringe
 a W / 2, por lo que el desempeño cae W / 2RTT
 - → Por lo tanto, el desempeño promedio es ¾W / RTT


iEl RTT está fuertemente vinculado al desempeño!

Redes de Computadoras - Mg. A. G. Stankevicius 29

Redes de Computadoras - Mg. A. G. Stankevicius 28

Equidad TCP

- Idealmente sería interesante contar con un protocolo que se comporte de manera justa
 - * Esto es, si se dispone de un enlace de capacidad **R** el cual es compartido entre **k** conexiones, cada una debería recibir un ancho de banda de **R** / **k**

Equidad TCP

- Imaginemos que dos sesiones TCP compiten por hacer uso de la totalidad del ancho de banda de un determinado enlace
 - El incremento lineal de la ventana de congestión hace que ambas sesiones vayan consumiendo partes equitativas de ese ancho de banda
 - El retroceso exponencial que se produce ante los eventos de pérdida también se dispara en ambas sesiones
 - Por ende, se converge hacia un uso equitativo del enlace entre las sesiones

Redes de Computadoras - Mg. A. G. Stankevicius 31

Equidad TCP vs. UDP

- Las aplicaciones multimediales suelen no hacer uso de TCP
 - Precisamente, el control de congestión lejos de ser una virtud sería un inconveniente
 - No es deseable que la ventana de transmisión ni la de congestión detengan el flujo de datos
- Es por esta razón que las aplicaciones multimediales suelen optar por UDP
 - Envían datos a un ritmo constante, tolerando la eventual pérdida de algún paquete

Redes de Computadoras - Mg. A. G. Stankevicius 32

Conexiones TCP paraleralas

- ¿Cómo interactúa la equidad TCP con el establecimiento de conexiones en paralelo?
 - Nada impide que una misma aplicación abra una cantidad de conexiones en paralelo
- Por caso, supongamos que un enlace de capacidad R está soportando 9 conexiones
 - Si una cierta aplicación abre una nueva conexión, recibirá apenas R / 10 del canal
 - Si más tarde otra aplicación abre 10 nuevas conexiones, recibirá en cambio R / 2 del canal

¿Preguntas?	
Redes de Computadoras - Mg. A. G. Stankevicius 34	